Combinatorial Coverage Measurement Concepts and Apjgations

D. Richard Kuhh Itzel Dominguez MendoZaRaghu N. Kackér Yu Lei®

! National Institute of
Standards and Technology
Gaithersburg, MD 20899, USA
{kuhn, raghu.kacker}@nist.gov

Santiago de

Abstract—Empirical data demonstrate the value of t-way
coverage, but in some testing situations, it is ngiractical to
use covering arrays. However any set of tests cogeat least
some proportion oft-way combinations. This paper describes a
variety of measures of combinatorial coverage thatan be used
in evaluating aspects of-way coverage of a test suite. We also
provide lower bounds ont-way coverage of several widely-used
testing strategies, and describe a tool that analgg test suites
using the measures discussed in the paper.

Keywords-component; combinatorial testing; factor covering
array; state-space coverage; verification and validation (V&V); t-
way testing; configuration model; t-way testing;

l. INTRODUCTION

It is not always practical to re-design an
organization’s testing procedures to use tests chanme
covering arrays. Testing practices often develogr dime,
and employees have extensive experience with écpiart
approach. Units of the organization may be stmectu
around established, documented test methods. iBhis
particularly true in organizations that must testading to
contractual requirements or regulatory standardand

“Centro Nacional de Metrologia

Mexico
itzel.dominguezmendoza@nist.gov

*Computer Science and
Engineering
Univ. of Texas
Arlington, TX, USA
ylei@uta.edu

Querétaro,

covered, then risk is likely to be smaller than ldoremain
after testing that covers a much smaller portionhef state
space.

This paper describes a set of measures of combialato
coverage [1][2] and illustrates how these measuegsbe
used in evaluating and comparing test suites ot tes
strategies. We prove certain properties of cowerfay
various test strategies in the case where all pstenh have
the same number of values, and show how the meaesute
tool can be used to analyze test sets with mixeelle
parameters and constraints.

Il. COMBINATORIAL COVERAGE

Of the total number afway combinations for a given
collection of variables, what percentage will berared by
the test set? If the test set is a covering atten coverage
is 100%, by definition, but many test sets not Hase
covering arrays may still provide significant-way
coverage. If the test set is large, but not desigas a
covering array, it is possible that it provides awcoverage
or better. For example, random input generatiory ma
produce tests covering a high proportion of comtmzs

because much software assurance involves testing) |5 addition to evaluating structural metrissch as
applications that have been modified to meet neWiaiement or branch coverage, for software asserainc

specificatio_ns, an extensive Iib_rary of legacydeshy exist. _ would be helpful to know what percentage of 2-wayyay,
The organization can save time and money by regusingi; coverage has been obtained. The fault detect

existing tests, which may not have been develogddcior
covering arrays.

effectiveness of combinatorial testing clearly degse on
tests covering-way combinations [4][5], but not necessarily

Short of creating new test suites from scratch, ong ihe method of producing the tests.

approach to obtaining the advantages of combiratori
testing is to measure the combinatorial coveragexadting
tests, then supplement as needed. Depending drutuet
and criticality of the software, 2-way through 5ywer 6-
way testing may be appropriate. Building coverargays
for some specified level dfis one way to providé-way
coverage. However, many large test suites najucaller a
high percentage dafway combinations. If an existing test
suite covers almost all 3-way combinations, for regke,
then it may be sufficient for the level of assuenbat is
required. Determining the level of input or configtion
state space coverage can also help in understariing
degree of risk that remains after testing. (In réwmainder
of the paper, the term “state space” may refeiitteeinput
or configuration space, since coverage measurely app
both.) If 90% - 100% of the relevant state space lheen

Definition. Variable-value configuration: For a set oft
variables, a variable-value configuration is a @kt valid
values, one for each of the variables.

Example. Given four binary variables, b, ¢ andd, for a
selection of three variables, ¢ andd the set §=0, c=1,
d=0} is a variable-value configuration, and the $at1,
c=1, d=0} is a different variable-value configuration.

Definition. Simple t-way combination coveragefor a
given test set fom variables, simple-way combination
coverage is the proportion dfway combinations ofn
variables for which all valid variable-values canfiations
are fully covered. In this and related definisorivalid”
configurations are those which are determined bgr-us

defined constraints to be relevant to the test lprobi.e., For total (+k)-way coverage wherk = 1, Chen and Zhang
those that are not excluded by constraints. Nasicered [6] have proposed théuple densitymetric. A special
in this paper are mixed-strength arrays, where saumbsets metric for ¢+1)-way coverage is useful because (1) the
of variables may be covered to different strengt@n coverage of higher strength tuples for t+1 is much lower
others. (because the number dfway combinations to be covered
grows exponentially with), (2) the coverage &t1 provides
Example. Table | shows an example with four binary some information for coveragetat- t+1 becauset{1)-way
variables,a, b, ¢, and d, where each row represents atuples are subsumed by higher strength tuples,(@3nthe
test. Of the six possible 2-way variable combivadi ab, = number of additional faults triggered byay combinations
ac, ad, bc, bd, gconly bd andcd have all four binary values drops rapidly witht > 2 [4].
covered, so simple 2-way coverage for the fourstést
Table 1 is 1/3 = 33.3%. There are four 3-way \@ea
combinationsabc, abd, acd, bgdeach with eight possible
configurations: 000, 001, 010, 011, 100, 101, 11, Of)
the four combinations, none has all eight confiores A related measure ipf)-completeness:
covered, so simple 3-way coverage for this testissé@. o)
As shown later, test sets may provide strong cqeefar ~ Definition. (p, t)-completeness: For a given set of n
some measures even if simple combinatorial coveiage Variables, (p,)-completeness is the proportion of valid

Definition. Tuple Density: Sum dofand the fraction of the
covered (+1)-tuples out of all possiblé+1)-tuples [6].

very low. combinations that have configuration coverage ofeast p
[7].
TABLE I. TEST ARRAY WITH FOUR BINARY COMPONENTS
TABLE 11. COVERAGE OF TEST SET IN'ABLE .
a b G d
0 0 0 0 Vars | Configurations covered Config coverage
0 1 1 0 ab | 00,01,10 75
1 0 0 1 ac | 00,01, 10 75
o | 1 1 1 ad | 00,0111 75
_ _ _ , bc | 00,11 .50
A test set that provides 100% simple combinatorial bd | 00,01, 10, 11 1.0
coverage fort-way combinations will also provide some cd | 00,01, 10, 11 1.0
degree of coverage fot+Hl)-way combinations,t{2)-way
combinations, etc. For some applications, it mayubeful simple 2-way coverage2/6 = 0.333
to break out the coverage figik, for a particular level of. total 2-way coveage = 19/24 =0.791
o . L (50, 2-completeness 6/6 =1.0
Definition. (t + k)-way simplecombination coverage: For a (75, 2-completeness 5/6 =0.833
given test set that provides 100% simipleay coverage for (.0, 9-completeness 2/6 =0.333

n variables, tt+k)-way simplecombination coverage is the

proportion of valid +k)-way combinations ofi variables Example. For Table 1 above, there are C(4, 2) = 6 possible
for which all variable-value configurations are Ijul variable combinations and C(4, 2) ¥ 2 24 possible
covered. variable-value configurations, wherer(j is the number of

Simple t-way coverage measures the proportion ofcombinations ofn things takent at a time, or fi choose
combinations of variables for whicil configurations ot ~ t". Of these, 19 variable-value configurations acered
variables are fully covered. But whénvariables withv ~ and the only ones missing aab=11,ac=11,ad=10, bc=01,
values each are considered, eadhple hasv' possible ©bc=10. But only two,bd andcd, are covered with all 4
variable-valueonfigurations. For example, in pairwise (2- value pairs. So for the basic definition of simpleay
way) coverage of binary variables, every 2-waycoverage, we have only 33% (2/6) coverage, but79%
combination has four configurations: 00, 01, 10, We (19/24) for the total variable-value configuratiooverage
can define some measures with respect to suchbiaria Metric. For a better understanding of this test we can

value configurations. These measures may be more@mpute the configuration coverage for each of she
Significant for fault detection than 5imp|e covezag variable Comblnatlons, as shown in Table 1. SdHiwrtest

set, one of the combinationbd is covered at the 50%

Definition. Total variable-value configuration coverage: level, three @b, ac, ad) are covered at the 75% level, and
For a given combination of t variables, total varla-value ~ two (bd, cd) are covered at the 100% level. And, as noted
configuration coverage is the proportion of variahlalue ~above, for the whole set of tests, 79% of variakilere
configurations that are covered by at least oné¢ase in a configurations are covered. All 2-way combinatitrave at

test set. This measure may also be referred totabt-way €ast 50% configuration coverage, so (.50, 2)-cefepless
coverage. for this set of tests is 100%.

Although the example in Table 1 uses variaklgk the If a test suite has only one test, then it cove(s, @
same number of values, this is not essential fa@ thcombinations. The total number of combinationd thast
measurement, and the same approach can be used b covered is G(t) x V, so the coverage of one test ig'.1/

compute coverage for test sets in which paramdtare
differing numbers of values.

The graph in Figure 1 shows a graphical dispifathe
coverage data for the tests in Table 1. Coveraggven as
the Y axis (ordinate), with the percentage of camabons
reaching a particular coverage level as the X @tiscissa).
Note from Fig. 1 that all of the six 2-way combioat are
covered to at least the .50 level, 83% are covardbe .75
level or higher, and a third have 100%
configurations covered. Thus the rightmost horiabtine
on the graph corresponds to the smallest coveradge v

from the test set, in this case 50%.
(]

Coverage
=
b

045 055 045 075
Combinations

Figure 1. Graph of coverage from test data

The symbol® in Figure 1 indicates the proportion of
combinations with 100% variable-value coverage, &hd
indicates the minimum proportion of coverage fdrtalay
variable combinations. In this case 33#) Of the variable
combinations have full variable-value coverage, aiid
variable combinations are covered to at least 0% tevel
(M). Note thatd is the level ofsimple t-way coverage
Since all variable combinations are covered toeatt the
level of M, we will refer toM as the t-way minimum

of valuetests provide 2-way,

Thus,M;> 1AM > 0.

Example The methods described in this paper were
originally developed to analyze the input spaceecage of
spacecraft software [7]. A very thorough set oéro¥,000
tests had been developed for each of three systémnthat
time combinatorial coverage was not the goal. \§ithh a
large test suite, it seemed likely that a huge renmmdf
combinations had been covered, but how many? Ikdet
3-way, or even higher degree
coverage? If an existing test suite is relativibigrough, it
may be practical to supplement it with a few adaitil tests

to bring coverage up to the desired level.

2

)

1

00 |

0e) 1 5

07] |]
[N
06 I H H

I
05
‘1

Coverage

0.4

03

0.2

01

0

0.00 010
005 015

020 030
025

040 050 0.80 070
045 055 085 075

Combinations

080
085

080 1.00

035 045

Figure 2. Configuration coverage for2"°4%? inputs.

The original test suites had been developed to
verify correct system behavior in normal operatanwell
as a variety of fault scenarios, and performansts tevere
also included. Careful analysis and engineerirtgiuent
were used to prepare the original tests, but thestdte was
not designed according to criteria such as stateroen

coveragé, keeping in mind that “coverage” refers to a branch coverage. The system was relatively langth, the

proportion of variable-value configuration value¥Vhere

82 variable configuration *2°4%° (three 1-value, 75

the value oft is not clear from the context, these measure®inary, two 4-value, and two 6-value). Figure 2hows
are designated, andM,. Using these terms we can analyzecombinatorial coverage for this system (red = 2-waye =

the relationship between total variable-value agunfation
coverage, t-way minimum coverage and simpleway
coverage.

3-way, green = 4-way). This particular test seswat a
covering array, but pairwise coverage is still tigkgly good,
because 82% of the 2-way combinations have 100% of
possible variable-value configurations coveredafid about

Let § = total variable-value coverage, the proportion 0f98% of the 2-way combinations have at least 75% of

variable-value configurations that are covered byeast
one test. If the area of the entire graph is 1(1l60% of
combinations), then

S >1-(1-9)(1-My
S > O+ M- D M,

possible variable-value configurations covered (2).

lll. ANALYSIS OF TESTSTRATEGIES

These coverage metrics can be used to analyzeugario
testing strategies by measuring the combinatonakrage
they provide. To illustrate this type of analys&me
examples are discussed in this section. The obgelsere is
to understand the coverage aspects of test steatemi aid
testers in choosing among them or in determinirdijtexhal
tests that may be needed. For example, if no £arve
been found with testing up to a certain levet,dfow likely
is it that ¢+1)-way combinations will detect a fault?
Measuring the level of total variable-value coverdagy t+1
will show what proportion oft§1)-way combinations have
been covered so far, which may help in decidingtidreto
run a full ¢+1)-way covering array. For example, if we
have already covered more than 75% of the combinsitat
the next level oft, it may not be cost-effective to do
additional testing. In addition to these practical
considerations, this type of analysis helps to @rpivhy
some test strategies are effective.

A. All Values

08

086

05

Covi

04

03

02

0.00
0.05

010

Combinations

Figure 3. t-way coverage, 2 tests with binary values.

Base Choice

Base-choice testing [8] requires that every
parameter value be covered at least once and @stairt
which all the other values are held constant. Eerameter
has one or more values designated as base chblmebase
choices can be arbitrary, but can also be seledeédpecial

Consider the¢-way coverage from one of the most basic tesinterest” values, e.g., default values, or values are used

criteria, all-values, also called “each-choice”hid strategy
requires that every parameter value be covereghat bnce.
If all parameters have the same number of valuethen

only v tests are needed to cover all. Test 1 has all peteam
set to their first values, Test 2 to their secoalligs, and so
on. If parameters have different numbers of \alwehere

most often in operation. If parameters have déffier
numbers of values, whem .. p, havev; values each, the
number of tests required is at least I i#,,(vi-1), or where
all n parameters have the same number of valyethe
number of tests is hfv-1). An example is shown below in
Table Ill, with four binary parameters.

p: -- pn havey; values each, the number of tests required is at

leastMaX=1 V.

Example If there are three values, 0, 1, and 2, for five
parameters, then 0,0,0,0,0; 1,1,1,1,1; and 2,2, 23| test

all values once. As shown above, each test caWgrf
the variable-value configurations, and no combaorati
appears in more than one test, so withvalues per
parameter and thustests, we have

M, (all-valueg > v =
vV Vt—l

Therefore, for the all-values criterion, where \&lues are
covered at least once, minimum coverage> 1AL We
can also reach this result by noting that eachcatrs Cf,
t) combinations, so withv values the proportion of
combinations covered isC(n,t)/C(n)V' = 1AM This
relationship can be seen in Figure 3. which shoowerage
for two tests with ten binary variables; 2-way miwnim
coverage = .5, and 3-way coverage = .25.

TABLE III. BASE CHOICE TESTS FOR* CONFIGURATION
a|b|c|d
base:| O O Q Q
test2| 1| O] O Q
test3| 0| 1] O Q
test4| 0| O 1 0Q
test5| 0| O O 1

The base choice strategy can be highly effectiespie its
simplicity. In one study of five programs seedeithwl28
faults [10], it was found that “although the Basaoite
strategy requires fewer test cases than OrthogAnalys
and AETG, it found as many faults.” In that stud§TG

[9] was used to generate 2-way (pairwise) testyatr We
can use combinatorial coverage measurement to help
understand this finding. For this example of anialy base
choice, we will considen parameters with 2 values each.
First, note that the base test in which each paemtakes

its base choice covers () combinations, so for pairwise
testing this is G, 2) =n(n-1)/2. Changing a single value of
the base test to something else will corelr new pairs (in
our exampleab, ac, andad have new values in test 2, while
bc and bd are unchanged). This must be done for each
parameter, so we will have the original base test
combinations plus(n-1) additional combinations. The total

number of 2-way combinations is IG(2) x Z, so forn
binary parameters:
M, = n(n-1)/2+n(n-1)
C(n,2)2?
C(n,2)+2C(n,2)
C(n,2)2?
3/4.

Coverage

040 0.50 0.60 070
045 055 0.65 0.75

Combinations

Figure 4. 2-way coverage for test set in Table Ill.

This can be seen in the graph in Figure 4. of @me for
Table lll. Note that the 75% coverage level iseipendent
of n.

This equation can be generalized to higher intaract

strengths. Base choice testing requinge-1) additional
tests beyond the initial one, so for any withn>t

M, (base-choicp= C(MY +n(v-1)C(n -1t -1)

C(n,t)v'
—1+t(v-1)
Vt

B. Modified condition decision coverage

Modified condition decision coverage (MCDC) is &stte
strategy required by the US Federal Aviation
Administration for life critical software [11]. It is
important to emphasize that MCDC is a coveragesgoin
for test suites normally applied to an entire paogr In the
analysis below, we analyze test sets with respecbre
expression at a time. This analysis helps to éxplhy
MCDC is effective. In practical applications, an BIC test
set applied to an entire program would be likelyheve
better combinatorial coverage than the resultsridividual
expressions shown below.

MCDC Lower Bounds

An exhaustive analysis of all Boolean expressionapoto
six variables has shown [11] that of1 tests can provide
MCDC coverage for nearly all expressions, whers the
number of variables involved in a Boolean exprassid\
natural question to ask is then, what level of cmatorial

coverage is provided by MCDC tests? This questammbe
addressed in two ways, by empirical data on contbiis
coverage for MCDC test sets, and by evaluatingMi@dbC
test construction using methods described in NIST8%8.
Shown below is one result on minimum coverage from
MCDC tests, followed by data on combinatorial caggr of
MCDC test sets for various numbers of variables.

An MCDC test set is constructed withdependence pairs
where the boolean expression being tested evaltmt@$or
one test in the pair and to 1 for the other t&tcause there
aren+1 tests in the test set, the independence pagdapy
such that each test belongs to an independencéagpdivo
variables. An example is shown in Table IV [12].sTe0
and 1 are the pair showing independent effe&, df and 2
for b, 2 and 3 ford, and 3 and 4 foc. Note that only the
variable concerned changes value between the tst® o a
pair, which changes the value of the expression thnd
shows the effect of that particular variable or diton.
(MCDC can be applied either to boolean variablestoor
conditions that evaluate to true/false.)

In the unique-causdorm of MCDC, it must be shown that
the expression changes value as one variable vialue
switched while others remain fixed. For example,
(atb)(ctd) = 1 for the first test. Changing the valueeof
from 1 to O while other values remain fixed causles
expression to evaluate to 0. In this manner, dnth@n
variables is changed with each additional testafdotal of
n+1 tests.

TABLE IV. (A+B)(C+D)

a|b|c|d]| (ath)(ctd)
Test(|1]0]|0]1 1
Test1| 00|01 0
Testz| 01|01 1
Test: |0[1]0]0 0
Test¢ | 0| 1]1]0 1

We can now show the following:

Theorem 1If an MCDC test set exists for an expression,
total combinatorial coverage for unique-cause t:esﬁtt

2
Proof: Choose one test arbitrarily as the bade {Ese base
test, testO, contains variables with Boolean valuesg;..von.
The base test, tgstovers Cf,t) t-way combinations. With
a total ofn+1 tests, there ane tests in addition to the base
test. Because MCDC requires that all variables @k both
values, the negation of the base test valugsyy, must
appear in one other of the additional tests, ofchvithere are
n. To construct test 1, MCDC requires that one alde
value is changed while others held fixed, which | wil

increase the number of covered combinations-typairs or
C(n-1t-1) t-way combinations. Continuing in this manner
for each of then variables adds a total afxC(n-1t-1)
combinations covered to the initial coverage oh,g(so
coverages = C(nt)+nC(n-1t-1)

C(n,t)2'

— 1+t
2t

Another definition of MCDC, masking MCDC,
“allows any number of conditions to change so lasgpnly
the condition of interest has influence on the onte of the
expression” [11]. Masking MCDC is easier to satisf
because there is more flexibility in the choicevafues for
the variables or conditions. For example, considdues in
columns of an MCDC test set (see Figure 5.), wieareh
row is a test and each column gives values forrécpéar
variable. For eaclrway combination of variables, test 0
has one set of valueg;..vo.. An independence pair of tests
must exist for each parameter to show that changiag

value of the parameter also changes the value ef thway combinations (assuming > t+1).
hagovering array, we know that any combination bf

expression, and that the particular parameter
independent effect on the expression value. Thube

for t parameters, the proportion of total coverage ieast
1+t 4
2t

MCDC Coverage Upper Bound
We can easily derive an upper bound on combindtoria
coverage by noting that each test coversn,t(
combinations, so witm+1 tests the proportion of covered
combinations is at most
(n+1)C(n,t) n+1
2'c(nt)

2t

Note that ifn+1 < 2, then the number of tests is insufficient
to cover all 2values for any parameters, s®; = 0. So for
n+1

21

MCDC total combinatorial coveragi tLtlS S <
2

C. (t+1)-way Coverage

A t-way covering array by definition provides
100% coverage at strengthbut it also covers somét+(l)-
Given at-way

parameters is fully covered in some set of testoining

expression has valugfor test0, there must be another tgst, any other parameter with any combinationt parameters in
such that paramet@l has valuey,, and the expression has the tests will give at§¢l)-way combination, which hag™
valuez Similarly for p, there must be a third test, j, such possible settings. For any set of tests coverihg-aay
thatp, has valuev, and the expression value switches backcombinations, the proportion oft+l)-way combinations

to z Thus for any pair of parameters there are i ldmee
distinct value pairs on at least three rowsg; vy, in test O,
Voy,Vi2 N testi, andv,, vi* in some other row, where * is

covered is thus/*!, so if we designate totatHl)-way
variable-value configuration coverage 8s;, thenS;; >
1/, for anyt-way covering array with > t+1.

any of the other parametetg,. Similarly there are at least _ _ _ .
t+1 t-way combinations ot+1 rows for anyt parameters. For practical testing, this observation metnat whenv

is small, we may gain a lot of efficiency by extergla t-

way test suite to+1, rather than re-run &l)-way test suite
pl | p2 from scratch. For example, with binary variablésye have
Test(| Vo1 | Voo run a 3-way covering array then we have tested dfaihe

4-way combinations as well. With a mixed-level sra
coverage measurement tool will be needed to idetiié
level oft-way coverage achieved.

Test |V01‘vi2 |

Test | Vig ‘ Vi | . Clearly, whered ., = (t+1)-way full variable-value
configuration coverage, N < V%, then® ., = 0, for anyt-
way covering array with > t+1 whereN = number of tests.
For many levels of andv encountered in practical testing,
this condition will hold. For example, ¥&3, then a 2-way
covering array with less tharf=27 tests can be computed
(using IPOG-F) for any test problem with less théh
parameters. S® = 0 for 3-way coverage for this example.
. Alternatively, note that iN > V™ then® 4 may exceed 0.
Proof. Because masking MCDC does not require all valuegqy example, witm = 360 parameters,= 2, @ ;= 0.002,
other than the parameter under consideration toairem for g covering array of 39 tests computed by ACTiSthis
f|Xed, there may be more thaml distinct combinations. Case’q)“_l is low despite 360 parametersy but with 39 testS,
Therefore because there afg@ssible combination settings 13,233 of C(360,3)=7,711,320 3-way variable comtiimes

are covered with all 27 values purely by chance.

Figure 5. MCDC tests.

Theorem 2With the masking form of MCDC, coverage
may exceed that for unique-cause form, so in génera

MCDC total coverage> %

D. Very Large Covering Arrays

values, or the user may define equivalence classes
continuous-value parameters. Input test files lbanvery

Covering array construction is a difficult problem large, limited only by system resources, and th@ tws

[13], but good algorithms are available now for mar
most practical testing applications [14][15][16]JL8].
However, for applications with hundreds of paramgtéhe

been applied to test sets with up to 625 binarpipaters on
a basic laptop with dual-core processor and 8 GB
memory.

of

most commonly used algorithms require long compatat A Features

times, or may not complete at all. This is paftcly true

for higher-strength coverage, above 3-way. The R

Combir?atorial C%verage Mgasurement (CCM); tool isthe set test; it will show the result of the measuent and
: charts.

currently being used to evaluate coverage for &lpm

with 358 factors, in a%%3%'5%14"' design. Test arrays are

generated randomly, then evaluated using CCM ast$ te

supplemented to provide an adequate level of cgeera

(generally exceeding 98%) up to 6-way. Random te

generation is trivial and completes in less thaedond, and

CCM evaluation times range from seconds to severats

for higher strength levels.

The main screen contains controls to load thechietaining

If all tests and parameters in the input file skidoé loaded,
just click on “Load input file” and select the td#e to be
%\nalyzed. If just some tests or parameters areetkddfore
5Ioading the input file, the number of tests andapsaters
should be specified using the numeric fields aborethe
left and pressing “Set number of tests and parasiete
Note that if all tests are to be loaded, it is netessary to
set the number of tests and parameters, provided th
parameters have values (no more than as indicatettieb
“Max values per parameter” field). The tool widlad in all
tests and discover parameter values that will kel s the

File: apl70.csv

No. Tests: 70

No. Parameters: 358

t-way Combinations | Var/Val Var/Val cov. | Invalid Total .

oy 5,005 e 270,45 5 ssenean] Measurement process. The tool can also processicons-
3-way 7,583,155 | 66,570,316 | 65,100,347 |0 ssosesa2ae | Valued parameters such as account balances, distaoc
4-way 673,005,095 12,131,841,873 11,366,077,530 0 93.6879774 % SEE

others with a large range of possible values.
“Specifying boundaries” discussion below. The pasters

1 Coverage for file 1 . 11 1 1
1 H o and their values are shown; they can be modifieti§png
0.9 - Total dway = 0.037 -o
B atmammeeeesi%e boundaries, and adding or removing values. Clickimg
0.8 -. Cov >= 0.10 = 673004736/673005095 = 1.000 | . | I h h | b | . d b .pe d
Cov >= 0.15 = 673003521/673005095 = 1.000
o Gov - 015~ e7a003521/673005005 - 1000 column will show the values below in order to bedified.
Cov == 0.25 - 672877118/673005095 - 1.000
0.6 Cov >= 0.30 = 672815748/673005095 = 1.000
o Cov >= (.35 = 672736616/673005095 = 1.000
g Gov >= 0.40 = 672664540/673005095 = 0.999 =loix|
§ 0.5 Cov >= 0.45 = 670294281/673005095 = 0.996 ler = _
8 o4 §§§§§§§§§E§§;§§§§§§§§§§§§§ Combinatorial Coverage Measurement
: ov >=0.60 = =0. Main |
Cov >= 0.65 = 665245046/673005095 = 0.988
03 Cov >f 0.70 = 664983356/673005095 = 0.988 MNumber of tests. 1 | Setnumber oftests and parameters | [Gen missing combinations ™ Appenditests
02 Gov - 0d0 - cedtymAsGr300E00% - 008 Nurter o paramoters o == - e |
Cov >= 0,85 = 652607872/673005095 = 0.970 Number of constraints [E——— covse 1= Ntests [10000 = Ty
Cov >= 0.90 = 640415294/673005095 = 0.952 —_—_I [Peport = J
0.1 Cov >= 0.95 = 533981942/673005095 = 0.793 Mexvelues per parameter [50 = r
Cov >= 1.00 = 52759001 1/673005095 = 0.784 Fietosted [ey heetep = ey |
— Pway — Sway & \Progtem Fis B gnuplatibintpgrupiot v = _.|
000 010 020 030 040 050 060 070 080 080 100 - dway Gway [']
0.05 015 0.25 0.35 045 055 0865 075 085 095 - dway R TraTaT | Paint Ehaul Resuhsl
Combinations Save chart Clear chart

Figure 6. Coverage for 70 tests>*23%4'5%14' design

IV. COVERAGEMEASUREMENTTOOL

Measures described above have been implemented in
feature-rich tool, Combinatorial Coverage Measuneime
(CCM), which is designed to handle large files witlixed
level parameters and constraints. The input file @mma-
separated values (CSV) file where each row is aded
each column represents a parameter. Constraimshea
specified at the beginning of the input file, oraihgh a
graphical user interface. Coverage measurementsbean
displayed as graphs or heat maps, and detailedrtsepo
generated. An option allows for test sets to heraatically
supplemented with additional tests to bring coverag to a
specified level (may be less than 100% if desitedetiuce
test set size). Combinations that are not coverdie input
test set can be exported for post-processing. G@Mthe
ability to automatically detect parameter valuesdiscrete

Figure 7. CCM main screen

NIST combinatorial Coverage Measuremen

Main Parameters | Cansirants | Invaid Combinatans |

Pl Pz P3 P4 5 3 7 PB
a a 1 1 1 1 1 1
bb bb 11 0 0 0 0 0

’ [r—

B. Boundaries and continuous-value parameters

For continuous-valued parameters, equivalence edass
are specified by indicating the number of valuessés and
boundaries between the classes. Boundaries maydec
decimal values. Where the boundary between tweseka,
andc; is x, the system places input values<nto ¢; and
values> xin c,.

| | Mumber Walue WalueB oundary ReferenceB ound.
Parameter [F3 2 Values forthis parameter: _ Acioad Paramete i) O=25
7@:\1 e i 1¢=25
[| [l [2 88>=51
S 2 99>=51
e =R 3 2 100>=51
B ! 28 ¢= 44<=50
2 Fi=H51
0 22¢=28
2 g7 »=51
Reset All _ Exi 2 90 =51
Figure 8. CCM parameter data screen. 10 3 o 3e=25
i 2 1] 2<=25
Charts display coverage measurements describetbpsty Figure 11.CCM range variable boundaries
and may be saved to an image file. After the fdads,
. . El =101 x|
coverage measures may be computed by clicking en tH{§Sr CombinatoialCoverage Measurement

appropriate button.

W | P | Dot |

& 7z & P Ps P8 7 P
y [1 1 1 1 1
Step Line Chart | Point Chart Results I o o e n 7 . 7 .
Bl
yarival @
by Coms Vel sy Irvesiid Tt Totsl -
14,761 13,852 0 938418806 % 2
82813 582,368 0 B2 3877975 % »
symbots
G s e

Figure 9. CCM coverage report screen.

Combinatorial Coverage Measurement Tool

12/12/2012
File: apl-set2.csv
No. Tests: 7617
No. : | 82
t-way Combinati var/Vval Var/Val cov. | Invalid Total
2-way 3,321 14,761 13,852 0 93.8418806 %
3-way 88,560 828,135 682,365 0 §2.3977975 %
4 l Covesage for fle
09
0.8 LI -
[NENN N - v =
07 H | z
L = 1.000
06 H Cov = 38543/88560 = 1.000
) Cou = 0,35 = 3BA08/BE580 - 0,988
R Cov >= .40 = 88110/88550 = 0,885
§ os Cov >= 0.45 - 87600188560 - 0.080
3 ! Cow »= 0,50 = 87206188580 = 0.985
04 Cov >= 0.5 = BS00R/B8560 =
g Cov >= 0,60 = 34030188560 - 0.049
N Coy »= 085 = 73421/88560 = 0829
0. Cou>=070= /EB550 = 0,816
Cov >=0.75 = 71012188560 - 0.812
02 Cou »= 0.80 = 59615188560 = 0.673
Cov >= 0.85 = 57974/88560 = 0.655
o Cov >= 0.00 = 44490/88560 = 0.502
Cow »= 0.95 = 43800188560 = 0.495
Cov >= 1.00 = 43715/88560 = 0.494
0
— 2uay
000 010 020 03 o040 05 060 070 080 080 100 —= Sy
005 015 025 035 045 0S5 085 075 085 095 — bway

Combinations

Figure 10.CCM coverage chart.

-

Figure 12.CCM constraint screen.

C. Constraints

Constraints may be included in the input file ortesed
interactively. Each line will be considered a geped
constraint. The image below shows an example dhant
file with constraints. The first two lines are tbenstraints;
followed by the tests, where each column correspdoca
parameter.

A B z D E Constraint handling is implemented using an open
1 P1="Linux" =>(P2 = "Explorer") source constraint solver called Choco [19]. Chacosed to
2 PS="MySQL"=>(P1="Windows") determine if a test satisfies all constraints bgvesting this
3 |Apple 05 Explorer Ipv4 AMD MysaL check to a constraint satisfaction problem. Choso i
4 Apple Os Explorer lpv4 AMD Oracle designed to handle arbitrary constraint objects, tast
5 Apple OS Explorer lpv4 AMD Sybase parameters are encoded into this form before imgkhe
6 AppleOS Explorer lpv4 Intel Mysal constraint solver. The Choco solver is an indepand
7 Apple OS Explorer flpvd __Intel __Sybase module as used in CCM, and could be replaced by a
8 Apple O5 Explorer lpve AMD Oracle . .
9 |Linux FireFox lpvd Intel Oracle different constraint solver.
10 |Linux FireFox lpvd Intel Sybase
11 |Linux FireFox lpve AMD MysQL D. Invalid Combinations
12 |Linux FireFox lpve AMD Oracle
13|linux FireFox Ipv6 AMD Sybase The invalid combinations will be shown if constrsin

Figure 13.CCM input file layout. specified, the invalid combinations will be genethtWhen

all the invalid combinations have been generatey thill
The constraints are shown in the main window, @ n be .ShOV.V” n a CCM.WmeW' Combmatlons_ determined t
be invalid by constraints should not appear intést set, so

constraints are specified in the input file, theyn de added X - S
interactively either by typing or selecting operatérom the these are identified by marking in the leftmosueoh of the
display as shown below.

tool bar. Three types of operators can be used: (1

Boolean operators including &&, I, =>; (2))
Relational operators including =, !=, >, <, >=, <and (3) NST Combinatorial Coverage Measurement
Arithmetic operators including +, -, *, /, %. e

In addition to incorporating constraints in compagti 4-:-\ s B E F - - E
measures, the tool will identify any tests thatran satisfy = -
the specified constriants. The following syntax && used
to specify constraints:

1252 value <50]
[value>50]

a a value>50]
bb th value<25]
bb th value<25]
bb th value<25]
[valuec25]

<Constraint> ::= <Simple_Constraint>
| <Constraint> <Boolean_Op> <Constraint>
<Simple_Constraint> ::= <Term> <Relational_Op> <er
<Term> := <Parameter>
| <Parameter> <Arithmetic_Op> <Parameter>
| <Parameter> <Arithmetic_Op> t0é&

0
0

0

1

1

0

0

1

0

0

0

1

bb th value>50] 1
bb th value>50] 1
value<25] 0
0

0

0

0

0

0

0

0

0

0

0

value<25]
value<25]

value<25]

a a [value<25]
value<25]

<Boolean_Op> = | “R&" | u”n | u—sm e

. aluec2s)
<Relational_Op> := “=" | “I=" | “>" | “<” | “>=" |“<=" b
<Arithmetic_Op>:= g [| ke | up | gy = = g:::i:

e e e e e e e AU R R U R RS

<Value> := <Integer_Value> | <Boolean_Value> | <@n¥alue> = = e -
Aol | B

Figure 15.CCM invalid combinations screen.

Figure 14.CCM constraint syntax.

Examples of constraints that can be specified telu
A report may be produced that will include the daling

e (P1=“Windows")=>(P2 = “IE" || P2 = “FireFox" quantities: o o
|| P2 = *Netscape”) , where P1 is a parameter for OS ® Total invalid combinations Number of all invalid
and P2 is a parameter for BrowsHrOS is Windows, combinations based on possible parameter values and
then Browser must be IE, FireFox, or Netscape constraints specified.
e Invalid combinations in set tesNumber of invalid
e (P1>100)] (P2 > 100) . where P1 and P2 are two combinations that occur in the set test.

parameters of type Number or RanBé.or P2 must be

greater than 100 V. RELATED WORK

e (P1>P2)=>(P3> P4) . where P1, P2, P3, and P4 are Although relatively new, combinatorial coverage
parameters of type Number or RangfeP1 is greater has been discussed in some earlier papers. Soritee of
than P2, then P3 must be greater than P4. concepts discussed in this paper were introducefin

which also included an application of an early i@rf the
tool to the analysis of large test suites; addélon

are specified. If any coverage measurement has been

measurement concepts were covered in [2]. A NI&ht
report [1] extended this work to include the measur
described in Sect. Il. Tuple density is describgda.

Also relevant are methods and tools for extendimg a
array to providet-way coverage. This problem was
considered in [20], and several currently availadggering
array generators provide the capability, includt@T [21]
and ACTS [13]. A significant difference with tleetools is
that they evaluate only whether all variable-value
configurations are covered for each combinationictvive
have referred to as simptevay coverage. The measures
introduced in this paper can thus be considerqutdgide a
more “fine grained” set of combinatorial coverage
measures.

V1.

An extensive body of empirical work shows that
combinatorial testing can be a very efficient comgrat of
software assurance. The key aspect of combinatori
methods is to covarway combinations sufficiently well to
detect faults, but it is not essential that tegtgénerated as
covering arrays. Although covering arrays are galhethe
most compact way of achieving t-way coverage, they
not always practical. For example,
contractual requirements may specify a particujge tof
testing, such as MCDC, or existing test sets maydael to
reduce cost. In such circumstances, it may beratdsi to
compute the-way coverage provided by the test set. CCM
is an easy to use, practical tool to compute coatbiial
coverage, which accommodates parameter constraimds

CONCLUSIONS

(4]

(5]

(6]

(7]

oy

regulations or

D.R. Kuhn, D.R. Wallace, Jr. A.M. Gallo, Softwaeaft interactions
and implications for software testing, SoftwaregiBeering, IEEE
Transactions on, 2004

D.R. Kuhn, M.J. Reilly. An investigation of the digability of
design of experiments to software testing. Procegdiof 27th
NASA/IEEE Software Engineering Workshop, Greenbelaryland,
2002; 91-95.

B. Chen, J. Zhang, Tuple Density: A New Metric @ombinatorial
Test Suites,Proceedings of the 33rd International Conference on
Software EngineeringICSE 2011, Waikiki, Honolulu , HI, USA,
May 21-28, 2011. ACM 2011, ISBN 978-1-4503-0445-0

J.R. Maximoff, M.D. Trela, D.R. Kuhn, R. Kacker, “Method for
Analyzing System State-space Coverage within a geWTesting
Framework”, IEEE International Systems Conference 20Afr. 4-
11, 2010, San Diego.

Ammann, P. E. & Offutt, A. J. (1994). Using formadethods to
derive test frames in category-partition testifgoc. Ninth Annual
Conf. Computer Assurand€ OMPASS'94),Gaithersburg MD, IEEE
Computer Society Press, pp. 69-80.

D. M. Cohen, S. R. Dalal, M. L. Fredman, and G.Ratton. The
AETG system: An approach to testing based on coatbiial design.
IEEE Transactions On Software Engineering, 23(7):434, 1997.

M. Grindal, J. Offutt, S.F. Andler, Combination Tiag Strategies: a
Survey, Software Testing, Verification, and Reliability. 15, 2005,
pp. 167-199.

J. J. Chilenski, An Investigation of Three Formstioé Modified
Condition Decision Coverage (MCDC) Criterion,Report
DOT/FAA/AR-01/18April 2001, 214 pp.

12] Hayhurst, K. J., Veerhusen, D. S., Chilenski, J&JRierson, L. K.
(2001).A practical tutorial on modified condition/decisi@overage
National Aeronautics and Space Administration, leypdresearch
Center, p. 74.

Y. Lei, R. Kgzkep. TAR7&uhn, V. Okun, J. Lawrend®OG: a

General Strategy for t-way Software Testingroc., IEEE
Engineering of Computer Based Systems 2007549 — 556.

(8]

(9]

(11]

(23]

. . [14] R. Bryce, C.J. Colbourn. The Density Algorithm for Pairwise
mixed level Va”"f‘bles' L . . Interaction TestingJournal of Software Testing, Verification and
The most basic measure is simple combinatorial remee Reliability, August 2007
— the proportion of combinations for which t-wayeoage [15] Bryce, R. C.J. Colbourn, M.B. Cohei Framework of Greedy
is achieved. A more useful measure is total caerathe Methods for Constructing Interaction TesfEhe 27" International
proportion of t-way combination settings coveredtest set ggggizgié’g (S,v‘lf)‘/"’%%s*)z”g'”eer'”g (ICSE), St. somdissouri,
maydhavela relatively Iowr:evel Ohf simple clovc_ermgllte [16] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, W. Bugvdge,
good total coverage, such as the example in Taple | Constructing test suites for interaction testingpcedings of 25th
which only 33% of the 2-way combinations were ceder IEEE International Conference on Software Engimggr2003.
but total coverage exceeded 79%. Using CCM to oreas [17] Charles J. Coloourn , Myra B. Cohen, A DeterminisBensity
total combinatorial coverage for a test set, then Algorithm for Pairwise Interaction Coverage, Pro€.the IASTED

supplementing tests to achieve a desired levebuémrage,
can provide strong interaction testing in situasiomhere
practical considerations rule out construction exts from
scratch using covering arrays.

REFERENCES
[1] D.R. Kuhn, R. Kacker, Y. Lei. Combinatorial Coveeag
Measurement, NIST IR 7878, Sept. 2012.

http://dx.doi.org/10.6028/NIST.IR.7878

Kuhn, D. R., Kacker, R. N., & Lei, Y. (2010). Primeti combinatorial
testing.NIST Special Publicatiqr800, 142.

A. Arcuri, L. Briand, "Formal Analysis of the Prdméty of
Interaction Fault Detection Using Random TestindEEE Trans.
Software Engineering18 Aug. 2011. IEEE Computer Society,
http://doi.ieeecomputersociety.org/10.1109/TSE.288 1

(2
(3]

Intl. Conference on Software Engineering, 2004

[18] Pairwise Testing Home Padgtp://pairwise.org
[19] The Choco Constraint Solverhttp://www.emn.fr/z-info/choco-
solver/index.html

[20] A. Hartman and L. Raskin. Problems and Algorithros €overing
Arrays. Discrete Mathematics, 284(1-3):149-156 42200

[21] J. Czerwonka,Pairwise testing in real world: Practical extensie
to test case generator’Proceedings of 24th Pacific Northwest
Software Quality Conference, October 9-11, 2006tld&al, Oregon,
USA, pp. 419-430, (2006).

Note: Identification of certain commercial produatsthis article
does not imply recommendation by NIST, nor doiesgly that the
products identified are necessarily the best avdddor the
purpose.

